
Long-time signatures of short-time dynamics in decaying quantum-chaotic systems

T. Gorin and D. F. Martinez
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany

H. Schomerus
Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom

�Received 29 June 2006; published 25 January 2007�

We analyze the decay of classically chaotic quantum systems in the presence of fast ballistic escape routes
on the Ehrenfest time scale. For a continuous excitation process, the form factor of the decay cross section
deviates from the universal random-matrix result on the Heisenberg time scale, i.e., for times much larger than
the time for ballistic escape. We derive an exact analytical description and compare our results with numerical
simulations for a dynamical model.
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Properties of complex quantum systems are mostly char-
acterized by a high degree of universality which is rooted in
the random interference of many partial waves �1�. A proto-
typical example is the cross section fluctuations which arise
from the random interference between the decay modes of an
excited quantum system. In the case of a large number of
decay channels, these fluctuations are free of all characteris-
tics except for the classical decay rate �Ericson fluctuations�
�2–4�. The main theoretical tool to describe such universal
properties is random-matrix theory �RMT� �5,6�. Semiclassi-
cal theories reveal limits to this description which are rooted
in direct processes and hence best characterized in the time
domain. Most notably, if the complex quantum dynamics is
due to a chaotic classical limit, the random wave interference
is only established after a finite time, the so-called Ehrenfest
time �7�. For shorter times, the quantum dynamics follows
the classical dynamics quasideterministically. Over recent
years, a large number of studies have explored the conse-
quences of a finite Ehrenfest time �8–11�, but almost exclu-
sively these studies were concerned with stationary proper-
ties.

The purpose of this paper is to develop a dynamical
theory for a physical observable—the form factor of the de-
cay cross section of an excited quantum system—in which
nonuniversal corrections can be detected directly in the time
domain. The dynamical theory is based on a stroboscopic
description which extends the previous analysis of stationary
properties in systems with a finite Ehrenfest time �12,13�. In
the absence of direct decay processes, our model exhibits the
typical universal fluctuations found in autonomous models of
quantum decay and described by RMT �14,15�. We incorpo-
rate quasideterministic direct decay by applying a mapping
formalism which has earlier been used to describe Fano reso-
nances �16� due to direct decay processes �17–19�. It turns
out that the deviations in the form factor from the universal
behavior persist up to times comparable to the Heisenberg
time, hence far beyond the regime of quasideterministic de-
cay.

Molecular photodissociation and atomic autoionization
are examples of half-collision processes �see Ref. �20� and
references therein�, i.e., the coherent dynamics of quantum
systems which have been excited by external means �e.g., the
absorption of a photon� and decay subsequently via energeti-

cally accessible open channels. Within the half-collision de-
scription, each decay amplitude is given by the overlap
��a ��� of the square integrable initial state ��� and the scat-
tering state ��a� associated with channel a. The form factor

Ĉ�t� is defined as the Fourier transform of the autocorrelation
function of the total decay cross section ��E�=�a	��a ���	2.
It can also be obtained from the Fourier transform of the
cross section itself,

Ĉ�t� =
1

L
��̂�t��2, �̂�t� = 


−L/2

L/2

dE e−2�iEt��E� . �1�

Here, we measure time in units of the Heisenberg time tH
=h /�, and energy in units of the mean level spacing � �h is
Planck’s constant�. Typically, only a finite energy range, clas-
sically small but quantum mechanically large �L�1�, enters
this formula.

In previous works �14,15,17–19�, the random-matrix de-
scription of half-collision processes has been set up for au-
tonomous systems which are described by an effective
Hamiltonian �1�. In the case of time-reversal invariance, the
autocorrelation function then follows from the Verbaarschot-
Weidenmüller-Zirnbauer �VWZ� integral �21�, and for sys-
tems without direct decay the form factor is given by

C0�t� = 

max�0,t−1�

t

dr

0

r du

2u + 1

4�t − r��r + 1 − t�1+Nf0

�t2 − r2 + x�2�1 + 2r + x�N/2 ,

x = u2 2r + 1

2u + 1
, f0 = r2 + 2rt + t − x . �2�

Stroboscopic model. We base our dynamical theory of
half-collision processes on a time-periodic quantum map de-
scription which has been previously used to describe trans-
port in systems with a finite Ehrenfest time tEhr
�12,13,22–24�. Because of time-reversal invariance of the de-
cay dynamics, the Floquet operator F is symmetric, F=FT,
which allows us to decompose F into F=FoutFin, with Fin

T

=Fout �5�. To introduce decay, we specify an N-dimensional
subspace �spanned by the column vectors of the matrix p�
within the M-dimensional Hilbert space of F. That subspace
provides the interface between the closed system and the
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decay channels. For ballistic decay �ideal coupling� we de-
fine Q=1− ppT and obtain the time-reversal symmetric open
quantum map �12,13�

��n + 1� = FinQFout��n� , �3�

which describes how the internal wave function � is de-
graded sequentially in successive decay attempts �where the
integer n is the stroboscopic time�.

If we consider a short excitation pulse which leaves the
system in the internal initial state ���=��0�, the quantum
map �3� yields

��n� = ��Fout
† QFin

† �−n��� , n � 0,

�FinQFout�n��� , n 	 0,
� �4�

for the forward and reversed time evolution of the system.
By contrast, for a continuous excitation process, Eq. �3� im-
plies �25�

��
� = 1 + 2 Re���FinQFout
1

e−i
 − FinQFout
��� . �5�

Both types of experiments are related to one another by the
fact that the Fourier transform of ��
� is just the return am-
plitude. That is, in the energy and time units of Eq. �1�,
�̂�t�=M�� ���n��, where t=n /M. The stroboscopic form fac-
tor is then obtained from Eq. �1�. Note that the spectrum of F
is homogeneous on the unit circle, so that we may set L
=M.

Direct processes. We now incorporate quasideterministic
direct processes by assuming that part of the initial amplitude
escapes during the first iteration of the map. Note that the
total cross section contains the forward but also the back-
ward �time-reversed� evolution Eq. �4�. This means that the
autocorrelation function will be equally sensitive to direct
decay in either direction. To study this dependence quantita-
tively, we assume the following decomposition for the initial
state:

��� = ��0� + Fout
† p��+� + Finp��−� . �6�

Here, ��0� and ��±� are assumed to be real in the basis
chosen. Also, we assume that the three terms are approxi-
mately orthogonal to each other, e.g., ��+�p†Fp��−�
0,
which would follow from the absence of any prompt pro-
cesses in the full scattering system.1 Hence, we find ���2

= ��0�2+ ��−�2+ ��+�2. While ��0� leads to purely indirect de-
cay, ��±�2 gives the probability for direct decay within the
first step of the open map, Eq. �3�, forward �backward� in
time. If ��+�= ��−�, ��� becomes real, and the whole decay
process becomes symmetric in time. The orthogonality of the
three terms in Eq. �6� then implies that the maximum amount
of direct decay �in forward or backward evolution� is re-
stricted to one-half.

To make contact with RMT we assume that Fout is taken
from the circular unitary ensemble, which then implies that

F=FoutFout
T is a member of the circular orthogonal ensemble

�5�. The resulting scattering ensemble �24� is essentially
equivalent to the random Hamiltonian ensemble discussed in
�1�. In particular, the S-matrix correlations are well described
by the VWZ integral �21,26�. This allows us to calculate the
autocorrelation function of the cross section in the mapping
formalism of Refs. �18,19�. The result is �for details see �27��

Ĉ�t� = ��0�4C0�t� +
1

2
��0�2���+�2 + ��−�2 + 2��+��−��C01�t�

+
1

4
���+�2��−�2 + ��+��−�2�C11�t� , �7�

where C01�t� and C11�t� are given by the expression �2�,
but with the function f0 replaced by f01= t and f11
= �x+r� / �1+2r+x�+ �t−r� / �1+r− t�, respectively. The auxil-
iary correlation functions C0�t�, C01�t�, and C11�t� all tend to
2 as t→0. The functions C0�t� and C11�t� can be seen in Fig.
1. They correspond to the limit cases of purely indirect
���±�2=0� and maximally direct ���±�2=0.5� decay. The
function C01�t�, if plotted, would lie in between. On a time
scale given by tH� tEhr, all three functions are notably differ-
ent. Equation �7� is the central result of this paper. It gener-
alizes related results obtained within the autonomous
random-matrix model �18,19�. These results are recovered
�for ballistic decay� by choosing ��+�= ��−�, while the univer-
sal random-matrix prediction �2� is obtained for ��±�=0. In
general, the form factor depends on three independent pa-
rameters, the probabilities ��±�2 for direct decay in forward
�backward� time evolution as well as the angle between the
two corresponding amplitude vectors.

Maximally asymmetric decay is obtained by setting ��−�
to zero. It yields

1In order that ��+�p†Fp��−� is different from zero, F must map
parts of the p subspace onto itself. That implies a prompt compo-
nent in the full scattering process.

FIG. 1. �Color online� Form factor �C̃�t�� times eNt for the case
of time-reversal-invariant decay �real initial coherent wave packet
in the open kicked rotor� and for different amounts of overlap of the
initial state with the regions of fast decay �solid lines�. Here,
M =4096 and N=50. The corresponding theoretical results �Eq. �7�,
with ��+�= ��−�� are shown with dashed lines. From top to bottom
��±�2=0,0.25,0.417,0.5.
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Ĉ�t� = ��0�4C0�t� +
1

2
��0�2��+�2C01�t� . �8�

This expression also describes the decay form factor for an
initial state ���=Fin���0�+ p��−��, and yields the same dy-
namics as choosing the initial state ��0�+ p��−� for the open
map ��n+1�=QF��n� used, e.g., in Refs. �13,28�.

Numerical results. The decay form factor of realistic
physical systems can be obtained from experiments or in
sophisticated numerical computations �29�. Here we test our
theoretical predictions by numerical investigations of a
simple model system, the open kicked rotator �12,13�, which
was used in most studies of the stationary properties of quan-
tum systems with a finite Ehrenfest time �8,10,9�. In the po-
sition basis the Floquet matrix can be decomposed as
F=XU†�UX, where

� = diag�e−i�k2/M� ,

X = diag�exp�− iMV�2�k/M��� , �9�

and V�
�=K�cos 
−� sin 2
� with �=1. For �=0, the stan-
dard kicked rotator, there are three different symmetries
present: time reversal, reflection, and conjugation �the com-
bination of time reversal and reflection�. A finite value of �
breaks the reflection and also the conjugation symmetry. The
initial wave packet ��� is constructed as a superposition of
two coherent states, located around the line p=0 and there-
fore real. The amount of overlap with the regions of fast
decay �equal for both backward and forward evolution� was
controlled by changing the location of and/or squeezing the
coherent states.

We analyze the normalized autocorrelation function

C̃�t�=2Ĉ����t� / Ĉ����0�, whose limit value at small times is
2, independent of the probabilities for direct decay. This
makes sure that the asserted sensitivity to direct processes is
related to the shape of the autocorrelation function, not its
norm �in practice, the cross sections measured or calculated
usually lack a reliable absolute scale�.

We first consider the case of a real-valued initial state,
with symmetric decay in time. Figure 1 shows the results for

the form factor �C̃�t��, scaled by the classical survival prob-
ability e−Nt. The numerical results are obtained for a large
number of internal modes M =4096 �required for our
random-matrix model to apply� and a large number of open
channels N=50. This allowed us to reach ��±�2=0.417 as the
maximal probability for direct decay. We take averages over
100 different realizations of the system, each corresponding
to a different value of the kick strength K �for all of them the
classical dynamics is completely chaotic�. The theoretical re-
sults derived from Eq. �7� with parameters corresponding to
the numerical data are shown with dashed lines. The numeri-
cal results agree perfectly well with the theoretical predic-
tions, within the remaining statistical uncertainty.

So far we have only discussed an ensemble average, while
experimentally or numerically it is not always possible or
desirable to change any system parameters. Can one detect
the direct quasi-deterministic decay for an individual sys-
tem? This question is addressed, for the case of maximally

asymmetric decay, in Fig. 2. We show the results for
M =10 000 and two values of N: N=20 in Figs. 2�a�–2�c� and
50 in Figs. 2�d�–2�f�. On the vertical axis we plot the func-
tion Y�t� which we obtain from the numerical data through
the transformation �27�

Y�t� =
1

t
�

m=20

Nt
C̃�m/M�

�C0�m/M� − C01�m/M��
, �10�

which allows one to obtain a best fit value for ��−�2 by linear
regression �not shown�. In this sum we have discarded the
first 20 kicks to exclude system-specific processes at the
Ehrenfest time scale. It removes the fluctuations in time, so
that only the sample-to-sample fluctuations survive. These
are shown by the gray areas in Fig. 2, while the expected
standard deviation for the average over 100 samples is
shown in black. The dashed lines show the different theoret-
ical curves, obtained from Eq. �8�, that fit best each one of
the numerical results. Since the sample-to-sample fluctua-
tions �light gray� often do not cover the whole available
range between the theory for purely indirect and dominantly
direct decay, even a single experiment may be sufficient to

FIG. 2. Numerical data and theory for Y�t�, for N=20 channels
�left panels� and N=50 channels �right panels�. The overlap of the
initial state with the regions of fast decay is given by ��−�2=0 �a�,
0.595 �b�, 0.907 �c�, 0 �d�, 0.571 �e�, and 0.906 �f�. Areas in gray
represent the range of the standard deviation of Y�t�, while areas in
black represent the standard deviation for �Y�t�� when the average is
taken over 100 samples. The dashed lines show the theoretical
curves for the different values for ��−�2; the respective theoretical
curve corresponding to the numerical result is plotted in light gray.
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extract some information on the presence of direct decay
processes.

We have developed a dynamical description for the form

factor Ĉ�t� of a decaying quantum system, taking into ac-
count the effect of direct �sub-Ehrenfest-time� decay pro-

cesses. We derived a general analytical expression for Ĉ�t� at
times of the order of the Heisenberg time, on the basis of a
suitable random-matrix model. While earlier studies
�14,15,17–19� implicitly assumed that the wave packet will
follow the same dynamics in forward and backward evolu-

tion, we allow for excitation mechanisms which lead to
asymmetric decay in time. In physical terms, asymmetric
decay would result from the preparation of an initial wave
packet with finite group velocity. Properly directed this
might strongly enhance the probability for prompt decay, but
only in one direction in time.
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